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A time-domain finite element method is developed to approximate the electro-
magnetic fields scattered by a bounded, inhomogeneous two-dimensional cavity
embedded in the infinite ground plane. The time-dependent scattering problem is
first discretized in time by Newmark’s time-stepping scheme. A nonlocal boundary
condition on the cavity aperture is constructed to reduce the computational domain
to the cavity itself. The variational problems using finite element methods are shown
to have unique solutions. Numerical experiments for both TE and TM polarizations
demonstrate the accuracy and stability of the method. c© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Time-domain methods for electromagnetic scattering problems have enjoyed growing
popularity in recent years due to their abilities to generate wide-band data and the advances
in computer technology. Since most scattering problems are defined in an infinite domain,
one is faced with the problem of truncating the infinite domain to a finite computational
domain without introducing excessive error. This can be accomplished by introducing an
artificial boundary enclosing the scattering body and an appropriate boundary condition on
it. In [6–8], the artificial boundary is chosen to be a circle or a sphere, on which an exact
nonlocal boundary condition (also called nonreflecting boundary condition) is constructed
to couple the field’s exterior to the artificial boundary to those in the interior of the boundary.
The exterior fields can be found analytically by using Fourier series or spherical harmonic
series. The interior fields are numerically computed by a finite element method. If the
scattering body is thin and long in one direction, the circular or spherical boundaries are
not efficient due to the unnecessary triangulations inside the circle or sphere. For such an
elongated scattering body, it is more desirable to place the artificial boundary as close to the
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FIG. 1. Cavity setting.

body as possible. In this case, absorbing boundary conditions (ABC) may be used as in
[11, 12]. For scattering problems in a cavity, one can place an artificial boundary at the cavity
opening, which is a line segment in 2-D or a planar region in 3-D. In frequency-domain
cavity problems, exact boundary conditions are constructed by using Green functions [10] or
Fourier transforms [2, 13]. In this paper, we consider the time-domain scattering problems in
two-dimensional cavities. We reduce the infinite problem domain to a finite computational
domain by introducing an exact nonlocal boundary condition onto the cavity aperture. We
use the finite element method to solve the problem in the cavity interior. Denote � as a
bounded 2-D cavity embedded in an infinite ground plane, where � is a bounded Lipschitz
continuous region in R

2 such that

� ⊂ {r = (x, y) ∈ R
2 : y < 0}, �̄ ∩ {r = (x, y) ∈ R

2 : y = 0} 
= ∅.

We denote S as the cavity walls, � as the cavity aperture, �c = {r = (x, y) ∈ R
2 : y = 0}\�,

and U = {r = (x, y) : y > 0} as the upper half plane. We assume that the ground is perfectly
electric conducting (PEC). � is either empty with εr = ε0 = 1 or filled with material whose
relative permittivity is εr > 1 (see Fig. 1). We assume that cavities are nonmagnetic; that
is, �r = �0 = 1. The scattering problem we consider in this paper is that given an incident
electromagnetic field (Ei , Hi ) interacting with the cavity � to produce a total field (E, H),
determine the scattered fields Es = E − Ei − Er , Hs = H − Hi − Hr , where Er , Hr are
the reflected electric and magnetic fields, respectively. The scattering problem can be de-
composed into the two fundamental polarizations: transverse magnetic (TM) and transverse
electric (TE). In the TM case, given the incident electric field of the form

Einc = (
0, 0, Einc

z

) = (0, 0, uinc), (1.1)

we wish to find the total field E = (0, 0, u) such that




−�u + εr
∂2u

∂t2
= 0 in � × (0, T ),

u = uinc + uref + us on � × (0, T ),

u = 0 on S ∪ �c × (0, T ),

(1.2)
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with the initial conditions

u(0, r ) = u0(r ),
∂u

∂t
(0, r ) = u1(r ).

The scattered field is defined in the upper half plane and satisfies


−�us + ∂2us

∂t2
= 0 in U × (0, T ),

us = 0 on �c × (0, T ),
(1.3)

and the radiation condition

lim
r→∞ r

(
∂

∂r
+ ∂

∂t

)
us(t, r ) = 0, r = |r |. (1.4)

By Maxwell’s equations, the magnetic field H can be found in terms of the solution u.
In the TE polarization, given the incident magnetic wave

Hinc = (
0, 0, Hinc

z

) = (0, 0, uinc), (1.5)

we wish to solve for the total magnetic field H = (0, 0, u) such that




−∇ · (
ε−1

r ∇u
) + ∂2u

∂t2
= 0 in � × (0, T ),

1

εr

∂u

∂y
= ∂uinc

∂y
+ ∂uref

∂y
+ ∂us

∂y
on � × (0, T ),

∂u

∂n
= 0 on S × (0, T ),

(1.6)

with the initial conditions

u(0, r ) = u0(r ),
∂u

∂t
(0, r ) = u1(r ).

The scattered field us defined in the upper half plane satisfies




−�us + ∂2us

∂t2
= 0 in U × (0, T ),

∂us

∂n
= −∂uinc

∂n
− ∂uref

∂n
on �c × (0, T ),

(1.7)

and the radiation condition (1.4). By Maxwell’s equations, the electric field E can be found
in terms of the solution u.

In time-dependent problems, an exact nonreflecting boundary condition (NRBC) is non-
local both in time and space. The nonlocality of NRBC in time requires the entire history of
the solution on the artificial boundary and can be very expensive for large problems. In [5],
the numerical methods for solving three-dimensional acoustic and elastic wave problems
in the unbounded domain are based on the Kirchhoff-type boundary condition which is
nonlocal in both time and space. Since this boundary condition requires storing solution at
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the artificial boundary for the amount of time it takes a wave to propagate the domain, the
numerical scheme can be expensive for large objects. Furthermore, this boundary condi-
tion is inherently three dimensional. The two-dimensional case is harder due to the nature
of the 2-D Green functions. For the time-dependent electromagnetic scattering problem
(Maxwell’s equations), exact NRBCs are derived in [8] by using vector spherical harmonic
series expansions (or multipole decomposition) for the spherical artificial boundary. As
discussed previously, the computational domain might be unnecessarily large when one
of the dimensions of the scatterer is much larger than others, for example a thin and long
body. To alleviate this problem, we discretize the time variable first by using the Newmark
scheme. At each time step, a spatially nonlocal boundary condition is constructed right at
the cavity aperture � so that the computational domain is reduced to the cavity itself. With
a time-marching scheme like Newmark, one is able to numerically solve a large cavity
problem since the memory requirement does not increase as time goes on. Though the
nonlocal boundary condition is only exact for the semidiscretized problem, it does yield
very accurate and stable results, as seen in the numerical experiments in Section 4.

The paper is organized as follows. In Section 2, we discretize the TM and TE equations
in time using the Newmark time-stepping scheme to obtain semidiscrete problems defined
in an infinite space. At each time step we construct exact nonlocal boundary operators on
the cavity opening to couple the fields in the exterior of the cavity to those inside. This
coupling enables the semidiscrete problems to be reduced to the cavity itself; hence, finite
element methods can be applied to approximate the solutions. In both cases, TM and TE,
we prove that at each time step the weak formulations using the exact nonlocal boundary
operators have a unique solutions. In Section 3, we discuss the implementation of the finite
element method. In Section 4, we present some of numerical experiments that show the
accuracy and temporal stability of the Newmark–finite element scheme.

2. SEMIDISCRETE PROBLEM

In this section, we first discretize the TM and TE equations in time by using the Newmark
method [3, 14]. We then construct nonlocal boundary conditions for each time step. The
boundary conditions couple the solutions in the exterior of the cavity to those in its interior,
which enables the computational domain to be reduced to the cavity itself. The reduced
partial differential equations will be numerically solved by the finite element methods in
the next section.

Let N > 0 be a positive integer. Define the constant time step �t = T/N . For each
n = 0, 1, . . . ,N , we denote un(x) and u̇n(x) as the temporal approximations of u(r , tn)
and ∂u

∂t (r , tn), where tn = n�t, r = (x, y) ∈ R
2. The Newmark method is defined by the

expansions

un+1 = un + �t u̇n + �t2

2
[2�ün+1 + (1 − 2�)ün], 0 ≤ n ≤N − 1,

u̇n+1 = u̇n + �t[� ün+1 + (1 −� )ün], 0 ≤ n ≤N − 1,

where ün satisfies, for the TM case,

−�un+1 + εr ün+1 = 0, 0 ≤ n ≤N − 1,
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or, for the TE case,

−∇ · (
ε−1

r ∇un+1
) + ün+1 = 0, 0 ≤ n ≤N − 1

and

u0 = u0, u̇0 = u1.

It is easy to see that the above time-stepping scheme is explicit when � = 0 and that it is
implicit otherwise. The scheme is of second-order accuracy when � = 1/2 and of first order
otherwise. For convenience, we express the Newmark scheme in the predictor–corrector
form as

Prediction.

ũn+1 = un + �t u̇n + (�t)2

2
(1 − 2�)ün,

(2.1)
˜̇un+1 = u̇n + �t(1 − � )ün.

Solution.

(TM)




−�un+1 +�2εr un+1 =�2εr ũn+1 in �,

un+1 = 0 on S,

un+1 = us,n+1 on �(since uinc + uref = 0 on �),

(TE)




−∇ · (∇ε−1
r un+1

) +�2un+1 =�2εr ũn+1 in �,

∂un+1/∂n = 0 on S,

un+1 = uinc,n+1 + uref,n+1 + us,n+1 on �.

Correction.

ün+1 = �2(un+1 − ũn+1),
(2.2)

u̇n+1 = ˜̇un+1 − �t� ün+1,

where �2 = 1
�t2�

.

2.1. TM Polarization

Here we solve the problem at each time step t = tn+1 using finite element methods. In
this case, the scattered field us,n+1 satisfies




−�us,n+1 + �2us,n+1 =�2ũs,n+1 in U,

us,n+1 = g on �,

us,n+1 = 0 on �c,

(2.3)

since εr = 1 in U . Here g =def
un+1 on �.
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LEMMA 2.1. Let g ∈ H 1/2(�) be given. Then the exterior problem (2.3) has a unique
solution,

us,n+1(r ) = �2
∫ ∞

0

∫ ∞

−∞
Ge

�(r , r ′)ũs,n+1(r ′) dr ′

+ 1

�

∫
�

∂

∂y
K0(�|r − x ′ x̂ |)g(x ′) dx ′, (2.4)

where Ge
� is the modified Green function defined by

Ge
�(r , r ′) = 1

2�
[K0(�|r − r ′|) − K0(�|r − r ′

i |)], r ′
i = (x ′, −y′).

Proof. Note that Ge
� satisfies the Dirichlet problem [9]

{
−�Ge

�(r , r ′) + �2Ge
�(r , r ′) =�(r − r ′) in U,

Ge
� = 0 on {y′ = 0} or {y = 0}.

Hence, the solution us,n+1 to (2.3) can be found analytically as

us,n+1(r ) = �2
∫
U

Ge
�(r , r ′)ũs,n+1(r ′) dr ′ +

∫
�

∂Ge
�

∂n′ (r , x ′ x̂)g(x ′) dx ′

= �2
∫ ∞

0

∫ ∞

−∞
Ge

�(r , r ′)ũs,n+1(r ′) dr ′ −
∫

�

∂Ge
�

∂y′ (r ; x ′ x̂)g(x ′) dx ′,

where r ∈ U . Here, n̂′ is the outward normal on � for the primed variables. It is clear that
n̂′ = −ŷ on �. By a direct computation, we see that

us,n+1(r ) = �2
∫ ∞

0

∫ ∞

−∞
Ge

�(r , r ′)ũs,n+1(r ′) dr ′ + 1

�

∫
�

∂

∂y
K0(�|r − x ′ x̂ |)g(x ′) dx ′.

Hence, (2.4) yields the analytical solution to the exterior problem (2.3).
Taking the partial derivative of us,n+1 with respect to y yields

∂us,n+1(r )

∂y
= �2

∫ ∞

0

∫ ∞

−∞

∂Ge
�

∂y
(r , r ′)ũs,n+1(r ′) dr ′ + 1

�

∫
�

∂2

∂y2
K0(�|r − x ′ x̂ |)g(x ′) dx ′.

However, we also note that

−
(

∂2

∂x2
+ ∂2

∂y2

)
K0(�|r − x ′ x̂ |) + �2 K0(�|r − x ′ x̂ |) = 0, y > 0.

So,

∂us,n+1

∂y
= �2

∫ ∞

0

∫ ∞

−∞

∂Ge
�

∂y
(r , r ′)ũs,n+1(r ′) dr ′

+ 1

�

∫
�

(
−�2 + ∂2

∂x2

)
K0(�|r − x ′ x̂ |)g(x ′) dx ′.
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By taking the limit y → 0, we obtain

∂us,n+1

∂y

∣∣∣∣
y=0

= H̃ n+1(x) + T e
� g(x), (2.5)

where

H̃ n+1(x)
def= �2

∫ ∞

0

∫ ∞

−∞

∂Ge
�

∂y
(x, 0; r ′)ũs,n+1(r ′) dr ′ (2.6)

and the nonlocal boundary operator T e
� : H 1/2(�) → H−1/2(�) is defined by

T e
� g(x)

def= 1

�

∫
�

(
−�2 + ∂2

∂x2

)
K0(�|x − x ′|)g(x ′) dx ′. (2.7)

Define V = {v ∈ H 1(�) : u = 0 on S}. From (2.5) we get

∂un+1

∂y
= ∂uinc,n+1

∂y
+ ∂uref,n+1

∂y
+ H̃ n+1 + T e

� us,n+1 on �.

Since uinc,n+1 + uref,n+1 = 0 on �, we also have us,n+1 = un+1 on �. Hence, we have

∂un+1

∂y
= 2

∂uinc,n+1

∂y
+ H̃ n+1 + T e

� un+1 on �. (2.8)

This is the nonlocal boundary condition imposed on the cavity opening, and the variational
formulation is ∫

�

{∇un+1 · ∇v + �2un+1v} dx −
∫

�

T e
� un+1|�v dx

=�2
∫

�

εr ũn+1v dx +
∫

�

H̃ n+1v dx + 2
∫

�

∂uinc,n+1

∂y
v dx .

Therefore, we wish to solve the variational problem

a(un+1, v) = bn+1(v), (2.9)

where

a(u, v) = (∇u, ∇v) + �2(εr u, v) − 〈
T e

� u, v
〉

�
, (2.10)

bn+1(v) = �2(εr ũn+1, v) + 〈H̃ n+1, v〉� + 2

〈
∂uinc,n+1

∂y
, v

〉
�

. (2.11)

The following is the main result of the section.

THEOREM 2.2. Let V ⊂ L2(�) be defined as

V = {u ∈ H 1(�) : u = 0 on S}.

Then the variational problem (2.9) has a unique solution in V.
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2.2. TE Polarization

Consider the TE equation (1.6). To derive the exact boundary condition on � we define
the function

z = u − uinc + uref.

By a direct computation, it is clear that

∂z

∂y
= 0 on {y = 0}.

Then in �, z satisfies




−∇ · (
ε−1

r z
) + ∂2z

∂t2
= f in � × (0, T ),

1

εr

∂z

∂y

∣∣∣∣
y=0−

= ∂z

∂y

∣∣∣∣
y=0+

on � × (0, T ),

∂z

∂n
= −∂uinc

∂n
+ ∂uref

∂n
on S × (0, T ),

(2.12)

where

f = −∇ · (ε−1
r (−uinc + uref)

) + ∂2(−uinc + uref)

∂t2
.

In the upper half plane U, z satisfies




−�z + ∂2z

∂t2
= 0 in U × (0, T ),

∂z

∂y
= 0 on �c × (0, T ).

To solve for u, it is sufficient to solve for z. So, we now concentrate on (2.12). The predictor–
corrector scheme of the TE problem is easily obtained in terms of zn+1 by replacing un+1

in (2.1) and (2.2) with zn+1 and the equation in the solution part with


−∇ · (
ε−1

r ∇zn+1
) + �2zn+1 = �2 z̃n+1 + f n+1 in �,

∂zn+1

∂n
= −∂uinc,n+1

∂n
+ ∂uref,n+1

∂n
on S,

zn+1 is continuous on �.

In the upper half space U, zn+1 satisfies




−�zn+1 + �2zn+1 =�2 z̃n+1 on U,

∂zn+1

∂n
= −gn+1(x) on �,

∂zn+1

∂y
= 0 on �c,

(2.13)
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where

gn+1(x) = ε−1
r

∂zn+1

∂y
.

LEMMA 2.3. For each gn+1 ∈ H−1/2(�), there exists a unique solution zn+1 to (2.13)
and is of the form

zn+1(r ) = �2
∫
U

Gm
� (r , r ′)z̃n+1(r ′) dr ′ −

∫
�

Gm
� (r , x ′ x̂)gn+1(x ′) dx ′, r ∈ U, (2.14)

where Gm
� is the modified “magnetic” Green function defined by

Gm
� (r , r ′) = 1

2�
[K0(�|r − r ′|) + K0(�|r − r ′

i |)]. (2.15)

The proof is similar to that of Lemma 2.1. Thus, on � we have

zn+1|y=0+ = H̃ n+1(x) + T m
� gn+1(x), (2.16)

where

H̃ n+1(x) = �2

�

∫
U

K0(�|(x − x ′)x̂ + y′ ŷ|)z̃n+1(x ′, y′) dx ′ dy′ (2.17)

and T m
� is a nonlocal boundary operator H−1/2(�) → H 1/2(�) defined by

T m
� � (x) = − 1

�

∫
�

K0(�|x − x ′|)� (x ′) dx ′, ∀� ∈ H−1/2(�). (2.18)

By Proposition 2.5, T m
� : H−1/2(�) → H 1/2(�) is bounded,

∥∥T m
� �

∥∥
H 1/2(�) ≤ C‖�‖H−1/2(�) , ∀� ∈ H−1/2(�).

Therefore, we obtain


−∇ · (
ε−1

r ∇zn+1
) + �2zn+1 = �2 z̃n+1 + f n+1 in �,

zn+1 = H̃ n+1 + T m
�

(
∂zn+1

∂y

∣∣∣∣
y=0+

)
on �,

∂zn+1

∂n
= −∂uinc,n+1

∂n
+ ∂uref,n+1

∂n
on S.

(2.19)

Now we set

wn+1 = zn+1 − �2
∫
U

Gm
� (r , r ′)z̃n+1(r ′) dr ′ def= zn+1 − H̃n+1.

Note that

wn+1|� = zn+1|� − H̃ n+1 on U,

∂wn+1

∂y
= ∂zn+1

∂y
on �.
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Thus, wn+1 satisfies


−∇ · (
ε−1

r ∇wn+1
) + �2wn+1 = hn+1 in �,

wn+1 = T m
�

(
∂wn+1

∂y

)
on �,

∂wn+1

∂n
= −∂uinc,n+1

∂n
+ ∂uref,n+1

∂n
− ∂H̃n+1

∂n
on S,

(2.20)

where

hn+1 = �2 z̃n+1 + f n+1 − (−∇ · (
ε−1

r ∇H̃n+1
) + �2H̃n+1

)
.

We introduce the functional space

V =
{

v ∈ H 1(�) : v = T m
�

(
∂v

∂y

)
on �

}
.

Then the variational form of (2.20) is to find wn+1 ∈ V such that

a(wn+1, v) = bn+1(v), ∀v ∈ V,

where

a(wn+1, v) =
∫

�

ε−1
r ∇wn+1 · ∇v + �2wn+1v −

∫
�

∂wn+1

∂y
T m

�

(
∂v

∂y

)

and

bn+1(v) =
∫

�

hn+1v +
∫

�

{
−∂uinc,n+1

∂n
+ ∂uref,n+1

∂n
− ∂H̃n+1

∂n

}
v.

THEOREM 2.4. Let V ⊂ L2(�) be defined by

V =
{

v ∈ H 1(�) : v = T m
�

∂v

∂y
on �

}
.

The variational problem of (2.20) has a unique solution.

In terms of un+1, (2.16) yields the nonlocal boundary

un+1|y=0+ = 2uinc,n+1 + H̃ n+1(x) + T m
� gn+1(x), (2.21)

since

gn+1 = 1

εr

∂zn+1

∂y

∣∣∣∣
y=0−

= ∂un+1

∂y

∣∣∣∣
y=0+

.

Thus, with the relation in (2.21) the interior problem for TE polarization can be written as


−∇ · (
ε−1

r ∇un+1
) + �2un+1 = �2ũn+1 in �,

un+1|y=0− = 2uinc,n+1 + H̃ n+1 + T m
�

(
∂un+1

∂y

∣∣∣∣
y=0+

)
on �,

∂un+1

∂n
= 0 on S.

(2.22)
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To prove Theorems 2.2 and 2.4, we need the following properties of pseudodifferential
operators. (The proof is long and rather technical and is omitted here for brevity. Interested
readers are referred to [4]).

PROPOSITION 2.5. Let S1 and S−1 be nonlocal operators on � defined by

S1(	)(x) = �0r+
( ∫

�

∂2

∂y2
K0(�|r − x ′|)	(x ′) dx ′

)
, x ∈ �,

S−1(	)(x) = �0r+
( ∫

�

K0(�|r − x ′|)	(x ′) dx ′
)

, x ∈ �,

respectively, where 	 ∈ H s(�), s ∈ R, r+ is the restriction to R
2
+, and �0 is the trace

operator �0u = u|� . Then S1 is a pseudodifferential operator of order 1 and S−1 is a pseu-
dodifferential operator of order −1, which implies that

S1 : H s(�) → H s−1(�) and S−1 : H s(�) → H s+1(�)

are bounded.

Therefore, we have

PROPOSITION 2.6. The operator T e
� defined in the TM problem is a pseudodifferen-

tial operator of order 1 and T e
� : H 1/2(�) → H−1/2(�) is bounded. Similarly, the oper-

ator T m
� defined in the TE problem is a pseudodifferential operator of order −1 and

T m
� : H−1/2(�) → H 1/2(�) is bounded.
Moreover, 〈T e

� g, g〉� is nonpositive for any g ∈ H 1/2(�) and 〈T m
� h, h〉� is nonpositive

for any h ∈ H−1/2(�).

Proof. Since T e
� is defined by

T e
� g = 1

�

∫
�

(
−�2 + ∂2

∂x2

)
K0(�|x − x ′|)g(x ′) dx ′

= 1

�

∫
�

∂2

∂y2

∣∣∣∣
y=0

K0(�|r − x ′ x̂ |)g(x ′) dx ′,

it is the operator S1 in Proposition 2.5. We can express 〈T e
� g, g〉� as

〈
T e

� g, g
〉

�
= −�2

�

∫
�

dx ḡ(x)
∫

�

K0(�|x − x ′|)g(x ′) dx ′

− 1

�

∫
�

dx
dḡ(x)

dx

∫
�

K0(�|x − x ′|)dg(x ′)
dx ′ dx ′. (2.23)

The above identity is a direct consequence of the Green formula applied to (2.7). The
symmetry of T e

� follows directly (2.23). Let �̃ be a smooth closed curve such that � ⊂ �̃

and g̃ ∈ H 1/2(�̃). We now set

w(x) =
∫

�̃

K0(�|x − x ′|)g̃(x ′) dx ′, x ∈ R
2, x ′ ∈ �̃. (2.24)
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Then we can easily show that w satisfies the equation




−�w + �2w = 0 in R
2\�̃,[

∂w

∂n

]
= g̃ on �̃,

[w] = 0 on �̃.

Thus, by the Green formula we get

0 ≤
∫

R
2
|∇w|2 + �2|w|2 =

∫
�̃

wi
∂w̄i

∂n
− we

∂w̄e

∂n
dx

=
∫

�̃

w

[
∂w̄

∂n

]
dx =

∫
�̃

w ¯̃g dx .

Hence, by multiplying (2.24) with ¯̃g and integrating the result over �̃, we obtain

0 ≤
∫

�̃

w ¯̃g dx =
∫

�

dx ḡ(x)
∫

�

K0(�|x − x ′|)g(x ′) dx ′.

Therefore,

〈
T e

� g, g
〉 = −〈K0(�|x − x ′|)g, g〉 − 〈K0(�|x − x ′|)g′, g′〉 ≤ 0.

Similarly, since the operator T m
� is defined by

T m
� h(x) = − 1

�

∫
�

K0(�|x − x ′|)h(x ′) dx ′, x ∈ �,

it is the operator S−1 in Proposition 2.5. It is also clear from the previous paragraph that

〈
T m

� h, h
〉

�
≤ 0.

This proves the lemma.
We now prove Theorem 2.2 and Theorem 2.4.

Proof (Theorem 2.2). Since T e
� is bounded, |a(u, v)| ≤ C‖u‖1‖v‖1 for some C > 0. By

Proposition 2.6, a(·, ·) is coercive. Therefore, by the Lax–Milgram theorem, the problem
a(u, v) = b(u, v) has a unique solution, u ∈ V as desired.

Proof (Theorem 2.4). This proof is exactly the same as in the TM case. By the definition
of the operator T m

� , we have

〈
∂wn+1

∂y
, T m

�

∂wn+1

∂y

〉
≤ 0.

Therefore, it is easy to see that a(wn+1, wn+1) ≥ C‖wn+1‖2
H 1(�) for some positive C . Hence,

by the Lax–Milgram theorem, the variational problem has a unique solution in V .
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3. FINITE ELEMENT APPROXIMATION

Let � be covered by a family of triangulations T h, 0 < h < 1. Let V h be the finite dimen-
sional subspace of V consisting of linear functions in �,

Vh = {vh ∈ V : vh |
 ∈ P1 for all 
 ∈ Th}.

Let {	h
j }N

j=1 be a linear nodal basis of Vh . Then each vh ∈ Vh can be expressed as

vh(x) =
N∑

j=1

v j	
h
j (x). (3.1)

3.1. TM Polarization

In this subsection, we discuss the finite element approximation of the TM equation: find
un+1

h , n = 0, 1, . . . ,N , such that

(∇un+1
h , ∇vh

) + �2
(
εr un+1

h , vh
) − 〈

T e
� un+1

h , vh
〉

�
= �2

(
εr ũn+1

h , vh
)

+ 2

〈
∂uinc,n+1

∂y
, vh

〉
�

, ∀vh ∈ Vh .

Substituting (3.1) into the above equation, we obtain the matrix equation

(K + �2 M − P)U n+1 = Fn+1,

where the system matrices K , M , P and the right-hand-side vector Fn+1 are defined as

[K ]i j =
∫

�

∇	h
i · ∇	h

j dx dy, [M]i j =
∫

�

εr	
h
i 	h

j dx dy, (3.2)

[P]i j = −�2

�

∫
�

	h
j (x)

∫
�

K0(�|x − x ′|)	h
i (x ′) dx ′ dx

− 1

�

∫
�

d	h
j

dx

∫
�

K0(�|x − x ′|)d	h
i

dx ′ dx ′ dx, (3.3)

{Fn+1} j = �2
∫

�

εr ũn+1	h
j dx dy +

∫
�

H̃ n+1(x)	h
j (x) dx

+ 2
∫

�

∂

∂y
ui,n+1(x, 0)	h

j (x) dx . (3.4)

The system matrices K and M are standard. We now discuss the computations of the non-
local boundary matrix P , the right-hand-side vector Fn+1, and the scattered field us,n+1 in
the upper half plane U defined in (2.4).

Assume that � is divided into segments � j = (x j , x j+1) and 	h
j is 1 at x j and 0 at other

nodes. Then the first integral in P becomes∫
�

	h
j (x)

∫
�

K0(�|x − x ′|)	h
i (x ′) dx ′ dx =

∫
� j

	h
j (x)

∫
�i

K0(�|x − x ′|)	h
i (x ′) dx ′ dx .

(3.5)
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When �i 
= � j , K0(�|x − x ′|) is nonsingular. We can integrate (3.5) using a standard in-
terpolatory quadrature. For example, by using the midpoint formula we have

∫
� j

	h
j (x)

∫
�i

K0(�|x − x ′|)	h
i (x ′) dx ′ dx ≈ |� j |

2

∫
�i

K0(�|(� j − x ′|)	h
i (x ′) dx ′

≈ |� j |
2

|�i |
2

K0(�|(� j − �i |), (3.6)

where |�i | and |� j | are the lengths of �i and � j , respectively, and �i = xi+1 + xi

2 , � j = x j+1 + x j

2 .
When �i = � j ,

∫
�i

	h
i (x)

∫
�i

K0(�|x − x ′|)	h
i (x ′) dx ′ dx ≈ |�i |

2

∫
�i

K0(�|�i − x ′|)	h
i (x ′) dx ′

≈ |�i |
2�

∫ �|�i |/2

0
K0(
 ) d
. (3.7)

To evaluate the last integral in (3.7) we can use [1, p. 480], for x > 0,

∫ x

0
K0(
 ) d
 = −

(
�0 + ln

x

2

)
x

∞∑
k=0

(x/2)2k

(k!)2(2k + 1)
+ x

∞∑
k=0

(x/2)2k

(k!)2(2k + 1)2

+ x
∞∑

k=1

(x/2)2k

(k!)2(2k + 1)

(
1 + 1

2
+ · · · + 1

k

)
, (3.8)

where �0 (Euler’s constant) = 0.5772156649.
Similarly, we consider the second integral in P ,

∫
�

d	h
j

dx

∫
�

K0(�|x − x ′|)d	h
j

dx ′ dx ′ dx =
∫

�i

d	h
j

dx

∫
� j

K0(�|x − x ′|)d	h
j

dx ′ dx ′ dx .

When �i 
= � j , we have

∫
� j

d	h
j

dx

∫
�i

K0(�|x − x ′|)d	h
i

dx ′ dx ′ dx ≈ K0(�|� j − �i |). (3.9)

When �i = � j , we have

∫
�i

d	h
i

dx

∫
�i

K0(�|x − x ′|)d	h
i

dx ′ dx ′ dx ≈ 2

�

∫ �|�i |/2

0
K0(
 ) d
. (3.10)

Hence, one can use (3.6)–(3.10) to approximate P .
Next, we consider Fn+1. For the first integral in Fn+1, we notice that in �, ũn+1(x, y) ≈∑N
i=1 ũn+1

i 	h
i (x, y); thus,

∫
�

εr ũn+1	h
j dx dy ≈

N∑
i=1

ũn+1
i

∫
�

εr	
h
i 	h

j dx dy =
N∑

i=1

[M]i j ũ
n+1
i . (3.11)
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For the second integral in Fn+1, we have

∫
�

H̃ n+1	h
j dx =

∫
� j

H̃ n+1	h
j dx ≈ |� j |

2
H̃ n+1(� j ), (3.12)

where

H̃ n+1(� j ) = �3

�

∫ ∞

0

∫ ∞

−∞

y′

|r ′ − � j x̂ | K1(�|r ′ − � j x̂ |)ũs,n+1(r ′) dr ′.

Since the integrand in H̃ n+1 decays exponentially with respect to |r ′| we can approximate
the infinite integral by truncation,

H̃ n+1(� j ) ≈ �3

�

∫ Y

0

∫ X

−X

y′

|r ′ − � j x̂ | K1(�|r ′ − � j x̂ |)ũs,n+1(r ′) dr ′,

where X > 0 and Y > 0 are sufficiently large. We can subdivide the intervals [−X, X ] and
[0, Y ] into smaller segments Xl and Ym and form rectangles Rlm = Xl × Ym . For each
rectangle Rlm denotes its center as �lm . Then, we further approximate H̃ n+1 by

H̃ n+1(� j ) ≈ �3

�

L∑
l=1

M∑
m=1

|Rlm | �lm · ŷ

|�lm − � j x̂ | K1(�|�lm − � j x̂ |) × ũs,n+1(�lm), (3.13)

where |Rlm | is the area of Rlm . For this approximation of H̃ n+1 the values

ũs,n+1(�lm) := us,n(�lm) + �t u̇s,n(�lm) + �t2

2
(1 − 2�)üs,n(�lm)

need to be precomputed. Thus, let us now consider the computation of the values of the
scattered field us,n at �lm . By (2.4) we have

us,n(�lm) = �2
∫ ∞

0

∫ ∞

−∞
Ge

�(�lm, r ′)ũs,n(r ′) dr ′

+ �

�

∫
�

�lm · ŷ

|�lm − x ′ x̂ | K1(�|�lm − x ′ x̂ |)un(x ′, 0) dx ′.

Thus, we can estimate us,n(�lm) by

us,n(�lm) ≈ �2
∫ Y

0

∫ X

−X
Ge

�(�lm, r ′)ũs,n(r ′) dr ′

+ �

�

∫
�

�lm · ŷ

|�lm − x ′ x̂ | K1(�|�lm − x ′ x̂ |)un(x ′, 0) dx ′.

By using the same rectangular subdivision {Xi × Y j = Ri j } of the region [−X, X ] × [0, Y ]
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we can further approximate us,n(�lm) by

us,n(�lm) ≈ �2
∑

Ri j ,�lm /∈Ri j

|Ri j |Ge
�(�lm, �i j )ũ

s,n(�i j )

+�2 1

2�
ũs,n(�lm)

{
|Xl |

∫
Ym

K0(�|�lm · ŷ − y′|) dy′ − |Rlm |K0(2��lm · ŷ)

}

+ �

�

∑
j=1

|� j | �lm · ŷ

|�lm − � j x̂ | K1(�|�lm − � j x̂ |)un(� j , 0), (3.14)

where �i j is the center of the rectangle Ri j whose area is |Ri j | and � j is the midpoint of
the segment � j whose length is |� j |. To treat the singularity in the integral term above, we
apply the same technique as in (3.7),

∫
Ym

K0(�|�lm · ŷ − y′|) dy′ = 2

�

∫ �|Ym |/2

0
K0(
 ) d
, (3.15)

which can be computed by (3.8). Therefore, we can approximate the second integral in
Fn+1 (3.12) by using (3.13), (3.14), and (3.15).

Finally, the last term in Fn+1 can be easily approximated by the midpoint formula; that
is,

2
∫

�

∂

∂y
uinc,n+1(x, 0)	h

j dx ≈ 2
|� j |

2

∂

∂y
uinc,n+1(� j , 0)

= |� j | ∂

∂y
uinc,n+1(� j , 0). (3.16)

Hence, combining the approximations (3.12)–(3.16) yields an approximation of the right-
hand-side vector Fn+1.

We summarize the time-stepping scheme.

1. Form the matrices K , M , P .
Time loop: for n = 0, 1, 2 . . .

2. Compute the predicted values ũn+1, ˜̇un+1 in the interior �.
3. Compute the predicted values ũn+1, ˜̇un+1 in the exterior U .
4. Form the vector Fn+1.
5. Solve (K + �2 M − P)un+1 = Fn+1 (in �).
6. Compute the solution un+1 in the exterior U .
7. Correct ün+1 and u̇n+1 in �.
8. Correct ün+1 and u̇n+1 in U .

3.2. TE Polarization

In solving the TE problem by using the finite element method, it is more convenient to
cast the problem in the mixed variational formulation as follows. Denote

� n+1 = ∂un+1

∂y

∣∣∣∣
y=0+

.
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By the continuity condition we have

ε−1
r

∂un+1

∂y

∣∣∣∣
y=0−

= � n+1. (3.17)

Define

 = {
 ∈ H−1/2(�) : ∃v ∈ V such that ∂v/∂y =  on �

}
.

Then the mixed variational formulation is as follows: find un+1 ∈ V and � n+1 ∈ � such
that


(
ε−1

r ∇un+1, v
) + �2(un+1, v) − 〈� n+1, v〉� = �2(ũn+1, v), ∀v ∈ V,

〈un+1,  〉� − 〈
T m

� � n+1, 
〉

�
= 〈H̃ n+1,  〉� − 2

〈
T m

�

∂uinc

∂y
, 

〉
�

, ∀ ∈ .
(3.18)

Let Th be a family of triangulations of � with triangles K . Assume that � is subdivided
into segments �s . Let Vh ⊂ V and h ⊂  be the finite dimensional subspaces defined
as

Vh = {vh ∈ V : vh |K ∈ P1(K ) for each K ∈ Th},
h = {h ∈  : h |�s ∈ P0(�s) for each �s ⊂ �}.

Denote {	h
j }N

j=1 ⊂ Vh as the rooftop basis and {� h
s }L

s=1 ⊂ h as the pulse basis. Hence, for
each vh ∈ Vh and for each h ∈ h we can write

vh(x, y) =
N∑

j=1

v j	
h
j (x, y), (x, y) ∈ �, h(x) =

L∑
s=1

x � h
s (x), x ∈ �.

We also need the basis functions {�h
s }L

s=1 on the segments �s for the trace of vh on �s ; that
is,

vh(x, 0) =
L∑

s=1

vs�
h
s (x), where �h

s (x) ∈ P1(�s).

Thus, (3.18) can be approximated by a system of linear equations

[
K + �2 M −B

BT −P

] [
un+1

 n+1

]
=

[
F̃n+1

1

F̃n+1
2

]
,

where

[K ]i j =
∫

�

ε−1
r ∇	h

i · ∇	h
j dx dy, [M]i j =

∫
�

	h
i 	h

j dx dy,

[B]s j =
∫

�s

�h
s dx, [P]st = − 1

�

∫
�s

∫
�t

K0(�|x − x ′|) dx ′ dx,



TIME-DOMAIN FINITE ELEMENT METHOD 503

and

{
F̃n+1

1

}
j
= �2

∫
�

ũn+1	 j dx dy,
{

F̃n+1
2

}
s
= 2

∫
�s

uinc,n+1(x, 0) dx +
∫

�s

H̃ n+1 dx,

for i , j = 1, 2, . . . , N and s, t = 1, 2, . . . , L . Here, K , M are N × N , B N × L , and P M × M
matrices respectively.

As before, we denote xs and xt as the midpoints of the segments �s , �t , respectively, for
s, t = 1, 2, . . . , L , and xs,r and xs,l are the endpoints of the segment �s . The finite element
matrices K and M are standard. The matrices B and P can be approximated by

B j,s ≈ 1

2
|�s |,

Pst ≈




− 1

�
|�s ||�t |K0(�|xs − xt |), if s 
= t,

1

�

|�s |
2�

∫ �|�s |/2

0
K0(
 ) d
, if s = t.

The vectors F̃n+1
1 and F̃n+1

2 are approximated as follows. First, we note that ũn+1 ≈∑N
j=1 ũn+1

j 	 j (x, y); hence,

{
F̃n+1

1

}
j
≈ �2

N∑
j=1

[M]i j {ũn+1} j . (3.19)

Next, the vector F̃n+1
2 is approximated by

{
F̃n+1

2

}
s ≈ 2|�s |uinc,n+1(xs, 0) + |�s |H̃ n+1(xs), (3.20)

where

H̃ n+1(�s) ≈ �2

�

N∑
l=1

N∑
m=1

|Rlm |K0(�|�s x̂ − �lm |)z̃n+1(�lm), (3.21)

zn+1(�lm) = un+1(�lm) − uinc,n+1(�lm) + uref,n+1(�lm)

≈ �2

2�

N∑
l ′=1

N∑
m ′=1

|Rl ′m ′ |{K0(�|�lm − �l ′m ′ |) + K0(�|�lm − �∗
l ′m ′ |)}z̃n+1(�l ′m ′ )

− 1

�

L∑
s=1

|�s |K0(�|�lm − xs x̂ |) n+1(xs). (3.22)

4. NUMERICAL RESULTS

For numerical experiments, let � be the rectangular cavity of dimension 1m × 0.25 m, as
in Fig. 2. We consider two types of excitations: continuous wave and Gaussian pulse. The
cavity is covered by a uniform mesh of triangles so that there are 20 nodes on the longer
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FIG. 2. Rectangular cavity � of dimension 1 m × 0.25 m.

sides and five nodes on the shorter ones. We set

�t = 1/20, � = 0.9, � = 0.25(0.5 + � )2.

To start the time-marching procedure, we turn on the incident fields at t = 0.

4.1. Incident Continuous Wave

In this example, the incident field is of the form

uinc = Re
{

eik0(x cos �inc+y sin �inc)eik0t
}
,

where k0 = 2�/� is the wave number and �inc = �/2. In the following examples, we use
� = 1 m (or 300 MHz). After a number of cycles, the steady-state solution follows a basic
pattern of the time-harmonic excitation. In Fig. 3, the cavity is empty (εr = 1) and TM and
TE solutions obtained using the time-domain finite element method (TDFEM) on the cavity
opening � are plotted and compared to the solutions obtained using the frequency-domain
finite element method (FDFEM). The results agree well. In Fig. 4, the cavity is filled with
εr = 4. Solutions obtained using TDFEM also agree well with those obtained using FDFEM.

FIG. 3. Solutions on � at 300 MHz for εr = 1.
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FIG. 4. Solutions on � at 300 MHz for εr = 4.

4.2. Incident Gaussian Pulse

We consider the Gaussian pulse described by (4.1)

uinc(x, y, t) = A
4

T
√

�
e−
 2

,

where


 = 4(t − t0 + x cos �inc + y sin �inc)

T
, �inc ∈ [�/2, �].

In the following numerical experiments, we set A = 1, �inc = �/2, T = 2, and t0 = 3. This
means that the Gaussian pulse will reach its maximum at the origin (0, 0) at t0 = 3. Two
types of cavities are used: empty (Figs. 5 and 6) and filled with εr = 2 (Figs. 7 and 8). In
each case, we plot TM and TE solutions at the center of the cavity opening (0, 0) and at the
interior point (0, −0.2). Solutions oscillate in the early time and then exponentially decay,

FIG. 5. Empty cavity (εr = 1).
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FIG. 6. Empty cavity (εr = 1).

FIG. 7. Filled cavity with εr = 2.0.

FIG. 8. Filled cavity with εr = 2.0.
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as expected. The stability of the solutions is clearly seen from the figures. LM in the plots
denotes a light-meter; i.e., the amount of time for light to travel 1 m in free space.
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